skip to main content


Search for: All records

Creators/Authors contains: "Kutterolf, Steffen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite their global societal importance, the volumes of large-scale volcanic eruptions remain poorly constrained. Here, we integrate seismic reflection and P-wave tomography datasets with computed tomography-derived sedimentological analyses to estimate the volume of the iconic Minoan eruption. Our results reveal a total dense-rock equivalent eruption volume of 34.5 ± 6.8 km³, which encompasses 21.4 ± 3.6 km³ of tephra fall deposits, 6.9 ± 2 km³ of ignimbrites, and 6.1 ± 1.2 km³ of intra-caldera deposits. 2.8 ± 1.5 km³ of the total material consists of lithics. These volume estimates are in agreement with an independent caldera collapse reconstruction (33.1 ± 1.2 km³). Our results show that the Plinian phase contributed most to the distal tephra fall, and that the pyroclastic flow volume is significantly smaller than previously assumed. This benchmark reconstruction demonstrates that complementary geophysical and sedimentological datasets are required for reliable eruption volume estimates, which are necessary for regional and global volcanic hazard assessments. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    We have successfully constructed and tested a new, portable, Hybrid Lister‐Outrigger (HyLO) probe designed to measure geothermal gradients in submarine environments. The lightweight, low‐cost probe is 1–3 m long and contains 4–12 semiconductor temperature sensors that have a temperature resolution of 0.002°C, a sample rate of <2 s, and a maximum working depth of ~2,100 m below sea level (mbsl). Probe endurance is continuous via ship power to water depths of ~700 mbsl or up to ~1 week on batteries in depths >500 mbsl. Data are saved on solid‐state disks, transferred directly to the ship during deployment via a data cable, or transmitted via Bluetooth when the probe is at the sea surface. The probe contains an accelerometer to measure tilt, internal pressure, temperature, and humidity gauges. Key advantages of this probe include (1) near‐real‐time temperature measurements and data transfer; (2) a low‐cost, transportable, and lightweight design; (3) easy and rapid two‐point attachment to a gravity corer, (4) short (3–5 min) thermal response times; (5) high temporal/spatial resolution; and (6) longer deployment endurance compared to traditional methods. We successfully tested the probe both in lakes and during sea trials in May 2019 offshore Montserrat during the R/V Meteor Cruise 154/2. Probe‐measured thermal gradients were consistent with seafloor ocean‐drilling temperature measurements. Ongoing probe improvements include the addition of real‐time bottom‐camera feeds and long‐term (6–12 months) deployment for monitoring.

     
    more » « less